G20農業鏈結開放資料會議 Part 3 – 語彙、分類、索引典、地球觀測

John Fereira, AGROVOC-Three Ways

John Fereira在上午的場次講過康乃爾大學發展的VIVO,在這個場次的演講很簡短,而他想分享的是AGROVOC可以使用在三個功能中,分別為:

  1. 自動標籤(AutoTagging),少部份或沒有詮釋資料的時候使用;
  2. 自動建議(AutoSuggest),應用於在使用者介面當需要手動加入一些關鍵字時;
  3. 概念匹對(Concept Matching),當標記標籤於一個領域特定的儲存庫中的資源且該標籤要能匹對於一個語彙。

他並以介紹Agriknowledge網站,是一個農業文獻服務網站即是利用AGROVOC且應用上述三個功能,圖31即顯示關鍵字在Agriknowledge的使用,這些關鍵字都和AGROVOC有對映,且文獻本身也有相對映的AGROVOC,如圖32所示。

圖31: Agroknowledge的關鍵字功能
圖32: 應用AGROVOC的概念階層來瀏覽文獻

Valeria Pesce, Semantic challenges in sharing dataset metadata and creating federated catalogs: the example of the CIARD RING

Valeria Pesce 是全球農業研究論壇(GFAR)的資訊系統經理和計畫經理,且與GODAN的祕書共同合作,過去曾代表FAO和GFAR,現今則是加入歐盟計畫資料基礎計畫( agINFRA, Big Data Europe),並管理CIARD RING和AgriProfiles開放資料平台的在全球與區域間的協調工作。

圖33: CIARD RING平台

她的演講主要是在介紹CIARD RING (如圖 33)平台中對於農業資料集的管理,並強調語意在資料集管理上的好處及方式,圖34說明了描述資料集如何需要語意,除了使用DCAT、 DCAT-Stats、DateCube和VOID的語彙外,對於主題詞和資料型態都可以利用知識組識系統(Knowledge Organization System)來架構,使這些主題詞和資料型態的詞彙能夠清晰表達。「值」的標準化,如資料的主題涵蓋範圍和維度、格式、和協定的使用等,這些值在RDF也通常被視為是「資源」(resource),所以可被以URIs來辦別,但值通常是一個字串、概念的URI通常是專屬的設計,並非沒有一個共通的知識組織系統來指涉所有的事,她舉了幾個例子,如農業主題詮釋資料是AGROVOC或CABI thesaurus? 地理的詮釋資料是GeoNames或FAO GeoPolitic Ontology? 還有維度及文獻的語彙應該選那一個,如圖35 所示。然而,語彙所涉及的範圍和複雜度不一樣,是否合適於自己的資料需要評估,並非所有語彙都需要。

圖34: 描述資料集所使用的語彙以正規化語意

Pesce 也說明了選擇農業領域和跨領域語彙用於CIARD RING平台經驗,CIARD RING是一個農糧資料集和資料服務的聯合目錄平台,RING是指Routemap to Information Nodes and Gateways,為GFAR對於農業研究發展(Coherence Information for Agriculture Research for Development, CIARD)的計畫,RING的主要目錄可以提供資料和資料集,且都有詮釋資料,並使用RDF編碼。聯合目錄是透過獲取(Harvest)其它目錄平台的詮釋資料而來,目前有聯合的平台計有datahub, EU open data portal, Dataverse catalog, data.gov.uk, data,gov等,計有2740筆資料,4832項服務。RING平台的詮釋資料是以DCAT-AP、VOID和DataCube為主,並且會推出RING DCAT profile,她隨後介紹了RING平台中對於資料和資料集的詮釋資料編碼。

圖35: 語彙的選擇

 

其中介紹了如何利用SPARQL Queries控制LOD的映對,如圖36中的SPARQL query,可以取得所有畜牧的資料集是以AGROVOC的Livestock。

圖36: LOD的SPARQL查詢

 

在演講的結論中,她也再次強調最大的語意之挑戰在於資料或詮釋資料整合時缺乏使用共通語彙,而不是在格式、綱要(schema)或描述的方式不同,在許多情境中,資料缺乏好語意是因為不關注這部份,而不是工具的不足,RING的機器可讀層和SPARQL endpoint不是提供給終端使用者,他們期待的是更多開發者去建構加值的服務。

 

 

Sophie Aubin, Agrisemantics, vision for an infrastructure for semantic-based interoperability of agricultural data

Sophie Aubin沒有出席,是由Johannes Keizer代為演講。

Agrisemantics是一個農業資訊語意的研究社群,企圖邁向一個可以無縫使用和創造語意資源以支持農業和食物資料的互操作性。Agrismenatics的價值是一個自動化語意資源集合可反應出豐富的觀點和不同的領域資料,農業概念應建立出一個共通的概念網要,即Global Agriculture Concept Schema (GACS),有一組穩定的URIs可以重複使用和連結其它資源,增加鏈結由不同資源中製造資料操作性,分享經驗和共同的實務經驗,Agrisemantics是一個新開始的計畫,其整體架構如圖37所示。

圖37: Ageisemantics的架構

 

地球觀測與遙測(Earth observation and remote sensing)

這個場次的有5個演講,如下所示,都是歐盟國家的計劃,和資料或開放資料有關。

  1. Holger Lilienthal, The Research Center for Agricultural Remote Sensing (FLF) – a data source for agricultural information based on Sentinel satellite data
  2. Silke Migdall, ESA’s Food Security Thematic Exploitation Platform “Supporting sustainable food production from space”
  3. Bernd Hoffmann, Decision support for crop protection – Pest identification using UAV technology
  4. Sebastian Fritsch, Using open data and artificial intelligence to digitize global agriculture
  5. Uwe Voges, Linking and finding earth observation data on the Web

對於上述5個演講,就摘錄與開放鏈結資料的重點來記錄。

Lilienthal博士的演講中主要是介紹歐洲哨兵衛星系列的影像如何應用於農業資訊的擷取,而歐洲哨兵衛星是以開放資料的方式釋出,在即時資料方面,可以進行農作型態分類、農作輪作、草地監測、和土壤流失監控,動態資料方面,可以進行產量潛勢推估、植物參數(如生物量、葉面積指數、葉綠素含量)、和物候學(如成長天數),如圖38。

圖38: 歐洲哨兵衛星應用於農業上可生產出來的資料

Migdall所介紹如何以巨量資料平台來處理糧食安全的問題,並且說明平台中的許多資料是地理和航遙測資料如何應用於糧食安全問題的決策。同樣地,Hoffmann 所介紹的是德國的整合型的農業計畫,而著重的是如何應用UAV影像擷取出更多有助於農業決策的資訊。

Voges 博士的演講是在於介紹如何利用鏈結資料技術於地球觀測資料的查詢上,他提到雖然地球觀測資料是開放資料,但通常透過特定的接口(portal),或典藏於特定的平台,如果使用者對於這些接口和平台不熟悉的話,很難找到且取用這些資料。利用 OGC Catalogue Service標準來進行地球觀測資料之詮釋資料的處理,透過一般的搜尋引擎還是無法找到資料,他認為鏈結資料的方法是解決這個困境的途徑,應該有一層鏈結資料服務層架構在底層的空間資料基礎設施(SDI),如圖39所示。接著他介紹了如何利用OGC OpenSearch Geo and Time[3]標準和鏈結資料技術實現以鏈結資料技術為主的地球觀測資料平台。

圖39: 鏈結資料服務層介於搜尋引擎、開放資料平台和地球觀測資料庫之間

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.