如何利用開放資料解決農業和糧食的問題

以下文字是取自於 ODI(Open Data Institute)在2015年發表的報告「How can we improve agriculture, food and nutrition with open data? 」,主要想分享報告中所整理的14個案例。

因為開放資料是任何人都可以近用、利用和分享的資料,這所形塑的解決問題之道,相對於不開放的資料是昂貴的、耗時的且不可能的。透過加快創新速度,開放資料促進了政府、商業、NGOs和個人的協同合作,得以有新的發現,以幫助永續地提供糧食於不斷增長的人口。這份報告區分出三個關鍵方向,其中開放資料在農業和糧食的挑戰中扮演解決問題的重要角色,這三個方向為:

  • 讓更有效、有影響的決策可以產生
  • 培植讓所有人都可以受惠的創新
  • 藉由透明化,趨使組織和部門的改變

讓更有效、有影響的決策可以產生

1. GroenMonitor: 以植被分佈圖防止害蟲爆發並保護農作物

田間生產量常因農作物受到害蟲侵襲而損害,在廣大的農田中,很難用人工方式偵測到老鼠或其它害蟲的入侵,GroenMonitor (GreenMonitor)是一個利用荷蘭的衛星影像所製成的植被圖來監控害蟲入侵的工具,其衛星影像是來自於歐洲太空總署 (European Space Agency, ESA)所釋出的開放資料,利用開放的衛星影像所製成植被圖,使得害蟲爆發的容易被辨識出來,在2014年,GroenMonitor 已經被用來辨識出12,000公頃受到鼠害的農地,這個工具現在還整合其它不同應用程式,包含植物物候學、作物辨識和產出、農業活動的辦識(如除草、犛田、和收割)、自然和水管理。

2. AWhere: 以氣象應用程式和簡訊預測幫助農夫

對於農夫而言,他們很難去取得影響他們耕作活動的基本資訊,如溫度高低、溼度和降雨,特別是在低度網路使用的地區,但很多資料提供者現在可以提供所需的氣象資料給個別農夫。AWhere 就是其中一個,透過他們全球資料庫和Weather Terrain,AWhere 結合從全球尺度到田間尺度的氣象觀測、預測模式、和歷史資料,幫助農夫做好的預測和規劃農業活動。

許多農夫,特別是發展中國家的,使用行動電話(而不是電腦)作為他們主要通訊的工具,因為這樣,迦納在地社群與AWhere一起合作,去發展一個APP在 Weather Terrain的Open API之上,以讓他們豐富的資料得以透過行動電話來使用,而這個使用方式是,氣象資料被轉換成簡訊服務,使用基本關鍵字(如,部份晴天的、部份多雲的、有風的)和照片,農夫可以低成本的方式使用氣象資料,讓他們可以決定關於耕作的事務。

3. Plantwise: 以最佳實務知識庫來增加農作用產量

約40%的全球作物產量損失是因為植物病蟲害,Plantwise幫助開發中國家的小農處理植物健康問題,它著重於增加糧食安全和改善鄉村生活以減少作物因病蟲害的損失,從 CABI(Centre for Agriculture and Biosciences International)的資料庫、研究論文和政府等資料,整合出全球和地方的開放近用的資料庫,使資料可以在線上平台取得和查詢,從全球各地的植物診所的疾病診斷報告,可以用來補充知識庫,並通知在處理蟲害的在地夥伴。

在二年發展下,Plantwise知識庫己經成為一個必要工具,以支持在33個國家的植物診所診斷,超過來自於198個國家的六十萬農夫造訪了這個知識庫,包含使用了超過九千筆的報表來取用關鍵的與作物蟲害相關的農業資料和最佳實作,去幫忙管理和預防作物在病蟲害的損失。Plantwise在2014年也獲頒ODI的對於社會影響的開放資料獎

4. CIAT Colombia: 以智慧氣候工具在旱災中省下3.6萬

這是一個最近利用公私資料的協作的案例,其成果幫助農夫得到預警,以避免旱災在哥倫比亞所造成的損失,在2007-2013年間,國際稻農組織(National Federation of Rice Growers; Fedearroz)、熱帶農業國際研究中心(Centro Internacional de Agricultura Tropical; CIAT)、和哥倫比亞農業部一同合作來處理旱災在稻米產量減少的議題,稻米是哥倫比亞重要的糧食之一  (詳見 Stuart, E, E. Samman, W. Avis and T. Berliner, 2015, The data revolution – Finding the missing millions, 37p)。

公私資料的使用,私部門資料取得是透過特別條款,CIAT 得以分析來自於每年稻米調查、採收記錄、田間試驗、和天氣資料的大資料集,且辨識出在稻米產量減少背後的複雜和區域特定之議題,根據分析,再去發展智慧氣候農業決策工具給哥倫比亞稻米種植者,而工具其實是開放給任何人的

無論是在農業部門,還是對於哥倫比亞的經濟的影響都是重大的,農業活動進行是根據 資料分析結果,幫助了農夫避免旱災造成的重大損失,省下估計360萬美元可能的經濟損失。這個智慧氣候的工具在2014年羸到聯合國巨量資料氣候挑戰頭銜

5. 加州水資源局: 以資料視覺化管理加州旱災

加州正經歷在過去記錄上最嚴重的旱災之一,缺水造成農業部門嚴重的威脅,農業的水利用是大約是整個州的80%左右,在2014年的農業部門的經濟直接損失預估有15億美元,在食物生產減少上有1萬7千工作喪失 (2014年加州旱災的經濟損失報告),為了確保安全和永續的水資源,加州水資源局宣布水供給計畫,這計畫減少了水分配到農地並減少了25%的用水。

開放資料被用來告訴州政府如何重新分配嚴峻的水資源,其方式是美國地質調查局(USGS)將乾早的情形視覺化,視覺化所使用的資料是由USDA研究機構群所收集,且開放近用的資料,這些資料涉及了農業永續、氣候變遷和自然資源保育在集水區尺度或景觀尺度之長期的自然、化學和生物資料,這使得研究人員和決策者得以監看水管理的狀況和計畫,根基於資料的模式,可以經常的更新、推估真實水量的水準、用水量和其它因子,並允許適時地預測和決策多少水量用於農業上。

美國農業部 (The US Department of Agriculture, USDA) 也研究了相關加州乾旱資料的開放,Catherine Woteki 博士希望這將是刺激公私部門在開放資料的使用,以幫助農夫在用水和作物選擇的決策支援。

培植讓所有人都可以受惠的創新

6. Climate Corporation: 以天氣模擬和智慧保險,省下作用和金錢

在過去,天氣預測模式中讓農夫很掙札,這些模式沒有把在地狀況納入考量,而導致沒效率的風險計算。Climate Corporation是一個開放資料商業公司,提供更為準確的保險和商業諮詢服務,以幫助農夫管理和調適氣候變遷。

透過分析大量來自於開放和其它來源的資料,對於特定作物產量進行模擬天氣事件和評估風險,因此他們得以提供專業的諮詢和準確的保險。

這公司使用開放資料是來自於美國國家海洋暨大氣總署(NOAA)美國國家氣象局的159個都卜勒雷達站、以及美國地質調查署(USGS)的地形圖和土壤分佈圖,Open Data Now的介紹

農夫使用詳細的天氣預測資以強化他們農耕行為和活動,如澆水、施肥、和播種,舉例來說,農夫可以使用這家公司所提供的溼度和降雨分佈圖,知道他們農田的特定區域是否過於溼潤而不能耕作。在一個工業水準上,開放資料加持的服務對這家公司的影響可以是很大的,在2013年,Climate Corporation的客戶使用他們產品耕作了超過一千萬英畝的農地

7. AgTrials: 以育種試驗的開放資料來改善作物品種

培育品種試驗是一個改善農作物品種的重要方法,在全球各地都有各式各樣的試驗在進行,這些試驗各著重於不同的主題,如耐旱、熱逆境和土壤管理,然而,這些資料幾乎都不能被其它研究人員所使用,而只是放在實驗室的硬碟中,甚至因為資料管理不好而造成資料逸失,形成不完整的資料集。

藉由農藝和植物育種試驗資料的整合和開放資料,由CGIAR在氣候變遷,農業和糧食安全研究計畫所負責的 Global Agricultural Trial Repository (AgTrials)  提供豐富的知識庫讓協同合作的計畫得以進行,去除掉非必要且有成本的重複工作。

科學家使用250個開放的AgTrials 資料集,以建立西非區域的農作物模式,這個模式被用在一個氣候變遷對於在地影響的計畫,並用來定義氣候變遷調適的育種計畫

8. FAO AGRIS portal: 把農業研究帶向大眾

AGRIS 是一個研究機構和資料節點的國際網絡,這個網絡讓農業研究資訊在全球可以取得,他們從在65個國家超過150個資料提供者中,收集且分享多樣的食物及農業出版品之書目資訊。

AGRIS 成為書目資料成為一個匯整平台,藉由超8百萬筆記錄的開放資料儲存庫,讓相關內容在線上有位址且可以組織這些內容,應用程式將在這個開放資料儲存中的記錄與連結網址與其它有品質的資料來源,例如世界銀行(World Bank)、自然期刊(Nature)、和中國種質資料庫(Chinese Germplasm Database)

AGRIS 平台已經有來自於204個國家超過750萬的人造訪,這些訪客從大學生到研究生都有,AGRIS 成為科學和技術資訊的最重要節點。

9.  CIARD RING: 讓農業食品(agri-food)資料更容易查找

儘管已經有很多相關於開放資料的資訊 (像資料集、平台、標準),相關資訊的檢索仍然是需要關注的重要議題,在這個脈胳下,CIARD R.I.N.G. 的資訊節點和閘道扮演了全球性農業研究發展(ARD)之註冊的網路資訊服務。

這個註冊服務允許資料提供者登記和分類他們的服務,在確保所有資料集都完成對於那種使用標準的詮釋資料(如語彙、範圍和標準)下,註冊的服務促進且利用了標準,而標準的使用促進資料的再使用(reuse)和被查尋,且允許更好自動化,現在約有1/3的農業食品資料集,即有超過1000個資料服務是具有特徵。

藉由透明化趨使組織和部門改變

10. Syngenta: 以開放且協作的平台來追蹤水、農藥、燃料的使用

在2013年,Syngenta宣布了他們的「好成長計畫 (Good Growth Plan)」,其中有6項承諾以改善農作物產量、保護土壤和生物多樣性,以及訓練小農和確保工作標準,並設定於2020年完成目標。這個行動著重於透過監測活動,如肥料和農藥利用及水和燃料的使用,讓農夫以永續的方法來增加農作物產量。

資料管理系統被建立於用來追蹤這些使用農地和公開農業資料的輸入輸出,由獨立的公司收集、驗証和分析

因應6項承諾的2014年的基準資料以機器可讀的格式(CSV)、CC-BY-NC-ND的條款釋出,透過這些行動,Syngenta和ODI合作,去建立一個開放且協同合作平台,以找出方法解決餵飽日漸增加人口的需求下減少資源使用,以及為生態多樣性而保護棲地。

11.FUNDAR: 在墨西哥找出不當使用的農場補助

在墨西哥,PROCAMPO 是一個最大的聯邦農場補助計畫,支援最貧窮農夫,自從2007年,他們開始關注真正極需要幫助的農夫,卻沒有拿到補助。

為了更了解這個情況,一個墨西哥的NGO組織,FUNDAR 研究分析中心徵求墨西哥農業部處理補助發放的相關資料,這個中心一開始拿到的資料是不完整且機器不可讀格式,在處理分析後,發現57%的受益者是分佈在最富有的10%之補助者,初步確認了他們所 害怕的事

這個重要的結果是來自於FUNDAR和其它NGO建立資料庫 (Subsidios al Campo en México)的貢獻,這個資料庫也不斷地發佈農場補助的資訊,以確保更透明化,以致於一系列的官員下台,且墨西哥政府也增加補助合格的限制。

12. 美國國家營養資料庫: 賦權消費者去聰明的選擇食物

消費者都會想知道他們買的食物之品質和內容物的資訊,雖然基本資訊已經標示在食品包裝上,但更詳細的食物營養資訊可以讓消費者依照個人需要做出更好的選擇,例如,遵從營養師指示。

美國農業部國家營養標準資料庫的(USDA National Nutrient Database for Standard Reference, SR25)是一個食物成份資料的主要來源,提供給公私部門,SR25包含約150食品公司中超過8,500食品品項的營養資料,例如維他命、礦物質、胺基酸、和脂肪酸,這些資料不限於商業應用(如,智慧型手機APP),這資料庫提供政府做了一個基本的服務 ChooseMyPlate.gov,由前美國第一夫人蜜雪兒歐巴馬和農業部祕書長湯姆·維爾薩克( Tom Vilsack)開始倡議,提供實務的資訊給個人、健康專業人員、營養教育者、和食品工業,以資源和工具幫助消費者做出飲食評估、擁有營養教育和其它友善的營養資訊,以建立更健康飲食

13. 歐盟食物警示: 幫助消費者了解他們吃的食物之風險

食物安全是另一個對消費者影響甚大的重要議題, 歐洲 RASFF (Rapid Alert System for Food and Feed) 平台 提供一個使用的資料庫,這資料庫收集的公開可得資訊是最近傳出的食品安全警示和通知,

消費者可近用資料於食品安全議題,例如出現在食品中過敏原,病原體,毒素或其他有害物質,以及分享預防資訊因為2011年福島核災,RASFF被用於監測來自於太平洋區域魚類和其它海洋產品中可能危害消費者的輻射殘留

How does RASFF work

14. LIVES: 標示餐廳檢查分數改善食品安全

開放資料也可以被用來幫助消費者去選擇那裡用餐,同時也促進改善食品安全的動機,LIVES (Local Inspector Value-Entry Specification) 是一個餐廳評分標準,目的在於標準化在不同管轄區的餐廳檢查分數,讓消費者了解不同城市和自家城鎮對食品安全的規格的不同。LIVES是在舊金山、Socrata, Code for America, 和Yelp在2013年所開始的計畫,它提供了餐廳檢查開放資料發佈的標準。因為市民得以更好的使用檢查結果,LIVES 事實上使食物容易清楚了解且可以選擇通過檢查的餐廳,當洛杉磯市開始要求餐廳要放衛生檢查等級在入口處,研究顯示減少了13%的因食源性疾病的住院治療

資料經濟(Data economy)是什麼?

歐盟在數位經濟和數位化社會(Digital Economy and Society)的發展脈絡下,著重於三個面向,也就是在

  1. 技術面,應著重於如何駕馭現今如此大量的、異質的和動態的資料,針對資料的特建構科技和基盤。
  2. 應用面,基於開放資料、鏈結資料、和巨量資料,打造創新的產品和服務。
  3. 社經面,在這個新的資料世代中,對於社會衝擊、法律問題、政府政策和法規、商業模式、商業化的應有調適和改變,以打造創新的環境。

而三個面向其實都是由資料的價值鏈(value chain)中衍生出來的。資料的價值鏈(value chain)主要行動都是在資料,包含資料輸入輸出、處理、分享和維護、而這些行動需要根植於支援的行動,包含政府對於資料的政策、法規、和治理想法,政府對於資料所建立的技術基盤(或者基礎設施),包含共通語彙、資料平台、資料標準和規範,這也是開放政府的透明化治理的一部份,而資料釋出後,技術社群會形成的生態圈,這其實就是公民科技是創新的基本,更重要的是,民眾因政府開放資料得以了解政府運作,甚至利用資料改善政府治理效能,使得政府和民眾的互動和溝通轉變,民眾不再只是一昧接受政府的支配,而是有能力提出改善的做法,這樣的發展則可能影響政府開放文化的態度。

 

以上內容發佈於Facebook

從知識發掘與資料探勘看自願性地理資訊之價值

自願性地理資訊是集結群眾的地理資料,常常記錄一般人對於週遭環境的經驗、感受與喜好,而知識發掘與資料探勘則是綜合各種技術和方法以便從資料中擷取出有用的知識,如何善用知識發掘與資料探勘由自願性地理資訊挖掘出有用的知識成為新世代地理資料科學家課題,讓我們用幾個實際的案例來說明知識發掘與資料探勘帶來解決問題的潛力,以及自願性地理資訊帶來的新的研究視野。

知識發掘與資料探勘

由於網路科技的發展,資料在網路中持續地快速增長,如何有效去蕪存菁,找出資料有用的知識,以解決問題,成為一項挑戰,知識發掘與資料探勘(Knowledge Discovery and Data Mining, KDD)即是一個跨領域的科學,著重於利用各種方法由資料中擷取出有用的知識,這些方法包含統計學、資料庫、圖形辨識、機器學習、資料視覺化、最適化分析、和高效能運算等研究。傳統的地理資料處理方法不足應付當今巨量且多樣化地理資料,知識發掘與資料探勘在地理資訊科學逐漸被重視,近年來常被應用於了解複雜的地理現象,例如,人與環境交互影響和社會經濟動態,同時也著重在於真實世界的危急問題,例如全球氣候變遷和流行性疾病散播(Mennis and Guo, 2009)。

自願性地理資訊

資通訊科技的革新,Web 2.0世代的來臨,改變了網路使用者的角色,從傳統上的資訊消費者,轉變成提供網頁內容的資訊生產者,同時,這個轉變也帶動了地理資訊的改變。傳統上地理資訊的生產是需要透過專業訓練的人員來製作,這些地理資料生產的工作也多數集中在測繪製圖單位、學研機構,然而,上述網路環境的轉變,也帶動地理資料生產方式的改變,新興的資通訊技術,開創了網路上開放性協同合作架構,帶動了網路地圖技術的革新,加上全球定位系統(Global Position System, 簡稱GPS)裝置的普及,使得一般人很容易地就可以在網路上共同地生產出地理資料,例如,開放街圖(OpenStreetMap, OSM),即是一個協同合作的線上地圖,參與者並非都是地理資訊專家,透過網路共同地繪製且編修地圖,這個地圖的產生不是專家學者的規劃,再由訓練有素的人員來繪製,相對地,這是透過一般人以協同合作的方式來產生,他們自願地貢獻時間精力來參與地圖繪製,產生地理資料,這類的地理資料通常被稱為「自願性地理資訊」 (Volunteered Geographic Information, VGI)(Goodchild, 2007)。

群眾外包集體智慧

自願性地理資訊其實就是一種群眾外包(Crowdsourcing)[1]的地理資料,在群眾集體協同合作的完成工作,在同儕相互檢視與競爭下,在生產的資料中產生集體智慧。 由群眾參與的製圖而成的開放街圖,縱然在一些區域的完整度和正確性仍有不足,但讓人驚艷的地方是,有許多地區已經達到商用水準,如西歐、美國、和日本,且與專業的地理資訊的品質亦相去不遠(Haklay, 2010),而包含於開放街圖中的知識,常成為補充專業性地理資訊不足的資源,以香港大學為主的研究團隊,他們利用開放街圖資料擷取土地坵塊的特性與類別,以便進行都市規劃(Liu and Long, 2015),而芬蘭國家土地測量局的一項研究也利用開放街圖擷取自行車道的資料,進而分析自行車道受歡迎的程度(Bergman and Oksanen, 2016)。

社群媒體的地理資料

除了開放街圖,事實上,有更多的自願性地理資訊是來自於社群媒體的使用,使用者為了分享訊息於社交網絡中,常常附帶一組地理座標於照片或文字中,使得這些分享的內容成為地理資料,這樣的地理資料,在多數情況下,不是事前的規劃才去產生的資料,而是一般民眾在日常生活中對週遭環境的觀察與感想,藉由社群媒體中分享於親朋好友,進而逐漸累積成有意義的資料,舉例而言,Flickr是知名的照片分享平台,提供使用者以標籤(tag)分類照片,當一地名被當成標籤而使用於帶有地理座標的照片時,這些照片所形成空間範圍,則可以表示一般人對於該地名所認知的空間範圍,圖1中所顯示的是以「公館」為標籤且帶有地理座標的照片所群聚出之區域,從圖上可以明顯看出,台北市內的公館是以新生南路到基隆路間的羅斯福路為基礎,並往北方的新生南路、東北方台灣大學校園、西南方的寶藏巖擴展,也就是說,當一般人提到台灣大學附近的公館時,其心裡所認知的空間範圍有可能不只有水源市場附近,而是更大的範圍。

圖1: 有「公館」為標籤且帶有地理座標的照片所群聚出之熱區圖

文字訊息是社群媒體中主要的內容,目前己經有許多研究和應用利用文字探礦(Text mining)的方法,由社群媒體的文字訊息來獲取有用的資訊或知識,例如預測群眾運動的發生、輿論的發展趨勢、商品的網路口碑、和災情分析等,同樣的,文字探礦應用於社群媒體也為地理資訊研究帶來不同視野,仇恨的地理(The Geography of Hate)是洪堡德州立大學(Humboldt State University)史蒂芬斯博士(Monica Stephens)團隊所執行的計畫,這個計畫的動機和剛卸任美國總統歐巴馬(B. Obama)有極大關係,他在第二任當選時,不滿他當選的人在推特(Twitter)中大量用歧視性字眼攻擊他,如黑鬼(nigger)和猴子(monkey),歧視性字眼的使用代表著仇恨、忿怒的負面情緒,而這些推特文(tweets)帶有地理座標,可標示於地圖,因此可以呈現出這些「仇恨」的地理空間分佈。該研究團隊收集2012年6月到2013年4月間,超過15萬筆的推特文,利用情感分析(sentiment analysis)將推特文分類,並依照情緒字眼所設計的量表,來區分出正面、中立、和負面,研究團隊不僅處理了對於種族仇視情緒,也處理了同性戀和身障者的仇視程度,當負面的仇恨情緒愈高時,在地圖上顯示的就愈紅、反之則愈藍,圖2所顯示的是黑鬼(nigger)的仇恨情緒的空間分佈,呈現出美國東西二岸相當不同的結果。

圖2: 黑鬼(nigger)的仇恨情緒的空間分佈 (http://users.humboldt.edu/mstephens/hate/hate_map.html)

GPS航跡中的時空間樣態

事實上,GPS航跡是自願性地理資料中不可或缺的一塊,許多人常會把跑步、自行車、開車、登山健行等活動所記錄的航跡分享,透過時空間這些航跡常常可以擷取出一些有意義的事件或地點。德國弗勞恩霍夫爾智慧分析與資訊系統研究所(Fraunhofer Institute IAIS)為主的研究,他們在義大利米蘭中收集了17,241部車子於一週中的GPS航跡,如圖3所示,利用時空間群聚分析把時空間行為相似的航跡歸類,並且區分出塞車事件和興趣點,圖4即是研究團隊從龐雜的GPS航跡中歸類出有意義的事件(Andrienko et al., 2011)。此外,北京大學為首的研究團隊分析北京市的塞車樣態,他們收集北京市中28,519部計程車在24天的GPS航跡,不但以時空間群聚分析把塞車事件區分出來,而且進一步地區分同一路段不同方向塞車樣態,圖5中說明了(a)路段是北三環路,很規律地在週間7:30-10:00和13:30-18:30二個時段都容易塞車,(b)路段的車速偏低,因為是在二個小學間,但週間的7:30-8:00時段是接送學生的時間,最容易塞車,(c)和(d)都是在北京西站旁的隧道,但分屬二個方向,一方向容易在早上塞車,而另一個在下午塞車,一大筆的GPS航跡若不經過處理很難看得出塞車(Wang et al., 2013),但經過適量處理後,不但可以發掘城市中的塞車樣態,可以了解市民的生活動態。

圖3:在米蘭一週中的GPS航跡之時空間分佈(Andrienko et al., 2011)
圖4:以時空間群聚分析從GPS航跡中歸類出有意義的事件(Andrienko et al., 2011)

 

圖5:利用GPS航跡以時間空視覺化分析北京市塞車樣態(Wang et al., 2013)

價值: 地理學研究再進化

自願性地理資訊帶來許多探究真實世界的可能性,而知識發掘與資料探勘的方法則是允許研究人員從資料中挖掘出知識的方法,利用合適的方法從自願性地理資訊中挖掘知識則為地理資訊科學帶來另一個視野,讓我們有可能更深入地了解人與環境的交互影響、區域特性和人文自然現象的空間分佈,即是應用知識發掘與資料探勘於自願性地理資訊的價值。

參考文獻

  1. Andrienko, G., N. Andrienko, C. Hurter, S. Rinzivillo3, S. Wrobel1 (2011) From Movement Tracks through Events to Places: Extracting and Characterizing Significant Places from Mobility Data, Proceeding of IEEE Symposium on Visual Analytics Science and Technology, pp.159-168, October 23 – 28, Providence, Rhode Island, USA
  2. Bergman, C. and J. Oksanen (2016) Conflation of OpenStreetMap and Mobile Sports Tracking Data for Automatic Bicycle Routing, Transactions in GIS, 2016, 20(6): 848–868.
  3. Goodchild, M.F. (2007), Citizens as sensors: The world of volunteered geography, GeoJournal, 69 (4): 211–221.
  4. Haklay, M (2010) How good is volunteered geographical information? A comparative study OpenStreetMap and Ordnance Survey datasets, Environment and Planning B: Planning and Design 37:682-703.
  5. Liu, X. and Y. Long (2015) Automated identification and characterization of parcels with OpenStreetMap and points of interest, Environment and Planning B: Planning and Design, 43(2): 341–360.
  6. Mennis, J. and D. Guo (2009) Spatial data mining and geographic knowledge discovery – An introduction, Computers, Environment and Urban Systems, 33: 403-408.
  7. Wang, Z., M. Lu, X. Yuan, J. Zhang, and H. van de Wetering (2013) Visual Traffic Jam Analysis Based on Trajectory Data, IEEE Transactions on Visualization and Computer Graphics, 19(12): 2159-2167

[1]群眾外包(Crowdsourcing)一詞是傑夫×豪伊(Jeff Howe)於2006年《連線》雜誌中所創造出的新詞,這個詞說明了當時正在發展趨勢,即是企業或組織的工作透過網路向廣大的群眾邀請,來提出解決問題想法(例如,因應氣候變遷的對策)、提供資源(例如,照片)、甚至簡單的勞務(例如,收集資料),最後,企業或組織聯合群眾一起共同地完成工作。群眾外包和外包(outsourcing)不一樣,外包(outsourcing)是將特定工作指派給特定的企業、組織、或個人,雙方會有一定的勞雇關係,而群眾外包是邀請廣大的群眾參與工作,強調協同合作的夥伴關係,參與者常常是自願者,也有可能得到一些回饋。