資料轉成RDF就是4星級資料了嗎?

因產銷履歷農產品鏈結資料之計畫所需,在data.gov.tw上尋找食品業者登錄資料集,意外的發現這筆資料居然提供RDF格式,不但如此,衛福部食藥署還有一個LOD的網頁,集合了他們製作的RDF資料集。引起了我的好奇,去看看這些RDF的資料,若他們的資料與系統完備,我們的產銷履歷農產品RDF資料即可以和衛福部食藥署的RDF資料連結,但看完資料後覺得有些建議,提出來和大家分享。

<rdf:Description rdf:about="http://data.fda.gov.tw/lod/tfda/FoodCompanyRegistration_VIEW/DATA_SN/6833319">
   <rdf:type rdf:resource="http://data.fda.gov.tw/lod/schemas/tfda/FoodCompanyRegistration_VIEW"/>
   <tfda:公司或商業登記名稱>早安!美芝城仁愛店</tfda:公司或商業登記名稱>
   <tfda:食品業者登錄字號>E-200028714-00002-7</tfda:食品業者登錄字號>
   <tfda:登錄項目>販售場所</tfda:登錄項目>
   <tfda:公司統一編號/>
   <tfda:業者地址>高雄市新興區仁愛一街177號</tfda:業者地址>
</rdf:Description>

上述是食品業者登錄資料集中的一筆資料,沒有了URL,其它的格式的資料沒有什麼不一樣。URL所指涉的是一件事物,讓別人可以去連結這份資料,而在食品業者登錄資料集中,主體是「食品公司」,所以<http://data.fda.gov.tw/lod/tfda/FoodCompanyRegistration_VIEW/DATA_SN/6833319> 指的是一個「食品公司」,即是「早安!美芝城仁愛店」,可被連結的。「早安!美芝城仁愛店」是一個實例(instance),而「食品公司」則是類別(class),因此rdf:type中應該指的是「食品公司」,就是<http://data.fda.gov.tw/lod/schemas/tfda/FoodCompanyRegistration_VIEW>。

1. URL 設計不良

邏輯上,這個RDF 的表達沒有錯,但就URL的設計而言,實在很糟禚。為什麼不簡單清楚一些? 例如,類別的名稱簡單清楚,用FoodCompany取代FoodCompanyRegistration_VIEW,因此,<http://data.fda.gov.tw/ontology/FoodCompany>來指食品公司的類別(class),而<http://data.fda.gov.tw/ontology/FoodCompany/6833319>來指「早安!美芝城仁愛店」這家店。

其實URL的設計是有一些原則,其詳情可以參考W3C的文件 Cool URIs for the Semantic Web

2. RDF與知識本體應一致

再者,這份RDF中的標籤使用中文,但知識本體的宣告卻是英文,這樣的做法機器是沒辦法知道RDF內用中文宣告的屬性,在知識本體中是對到那一個英文。或是說URL根本就不一樣,怎麼有可能對在一起!

3.提供SPARQL查詢

RDF資料通常會利用三元組儲存庫(triple stores)來管理、儲存和查詢資料,這些三元組儲存庫通常也可以透過網路提供SPARQL的查詢服務,因此常稱為SPARQL endpoints,這些工具的技術都己經成熟,而且也有自由軟體可以利用,同時因開放碼源,也可以客製化成自己需求的服務,如果使用者還是把資料下載再使用,那用URL去指稱事物的功能,在網路上就無法發揮更好的效用。

4.缺乏利用既有語彙

為了資料容易整合,在建立資料知識本體時,多考慮使用標準或既有的語彙為主,以增加資料的可再使用性。食藥署的這批RDF資料,無論在類別或屬性都有標準或既有的語彙,是可以考慮多使用這些語彙。

在火車誤點背後的資訊化落後問題

開放資料的問題常常是從自身的日常生活開始。二週前,從花蓮回到台北時,搭了一班假日加班車自強號253次,從花蓮出發,中途就只停松山,而終點站是台北,整個車程只有三站,但當日(12/18)的車次在抵達松山時已經是誤點3分鐘,遲到時間不多,但在深夜時段、沒有乘客上下車的情形下,還會誤點,這就很有問題。

台鐵其實很少準時

很好奇地在網路上著手查詢一下台鐵誤點資料,發現交通部統計查詢網中,可以找到歷年來各種火車類別的到站準點率,但有趣的是,其中有些資料,例如客運量,已經在政府資料開放平台上發佈,但準點率的統計卻沒有,為什麼呢?

透過各種列車的每月平均到站準點率之統計資料,把過去10年的資料攤開來看,結果很有趣,慢車比快車準時,普通車才有可能達到一整個月都準時,整體而言,準點到站率表現最好,其次是區間車,莒光號與自強號半斤八兩,這樣的結果難道沒有人覺得很不合理嗎?!

是! 這個問題確是在2015年10月時,就有立法委員提出來要求台鐵改善,要求成立專責小組,當時的交通部長還要求台鐵在半年月內改善,然而,這件事就在總統大選與政府輪替後,又石沉大海,大家好像又習慣了台鐵的誤點,對於經常性的誤點只有無奈以對,或者是自嘲地挺過一次次等嘸車的無奈。

台鐵誤點讓使乘客等車等了"一年" (截圖於爆社公社臉書社團)

誤點原因

自由新聞報導台鐵早在2014年委託財團法人成大研究發展基金會,分析比對2014年1~6月間列車的ATP行車紀錄、班表紀錄及售票紀錄、和誤點紀錄,以調查造成誤點原因,其結果歸納出幾個,

  1. 發現旅客過多或個別旅客因素、
  2. 通過施工處減速、
  3. 列車會車避讓他車、
  4. 被先前列車延誤、
  5. 電車線故障。

這個分析的結果引發討論,並有人認為旅客過多,是台鐵本來應該利用路線設計和引導去解決的問題,不應該把責任推給旅客。

資料是提昇服務的關鍵

火車誤點一定會有一些不可抗力的因素,例如,上述所提到的因施工需要減速,或是突發狀況,例如設施故障或交通意外,對於一個乘客而言,事先了解發生什麼事而誤點,可避免這搭乘這些路線的列車,在車上的旅客了解誤點的原因,可以安心的搭乘。從台鐵委託成大的研究可以知道,台鐵都有這些資料,那為什麼不善用這些資料提供更好的服務呢? 即使台鐵本身沒有能力開發更好的服務系統(訂票系統令人失望呀!),只要把這些資料以結構化且開放授權的方式釋出,也一定有高人可以利用這些資料來開發應用程式。

相對於台鐵,荷蘭國鐵算準時,但也常誤點,對於施工所造成的誤點,不但會在手機APP上提醒,也會在火車時刻查詢系統中加入預估延遲的時間,在搭車前可以避免搭乘會誤點的列車,或是有延遲的心理準備

透明化的荷鐵施工資訊

 

整合施工資訊於火車時刻查詢系統

而荷鐵不但自已有APP和應用程式服務旅客,進一步地,荷鐵把提供服務的資料一併以API方式釋出,被視為開放資料,但授權方式不是很清楚,限制是每日不能超過5萬次查詢(request)。也因為有這樣的開放的API,其資料可被使用的方式就變得多樣,例如,NS API可以查詢到每一班火車的實際位置,因此有人利用這個資料結合OSM開發出即時的火車動態圖

利用荷鐵Open API 整合OSM 製作即時動態火車地圖

開放資料是台鐵轉變的契機!?

事實上台鐵委託成大的研究中,只用了6個月的資料,台鐵在交通部的統計資料至少有20年,6個月可以做的分析,20年為什麼不能做? 那若是利用完整的資料的分析,其結果又是如何? 對於一個好奇的人,會更想利用這些資料去了造成台鐵火車誤點的原因,為什麼慢車比快車準時? 為什麼看似沒什麼事發生、也沒停站,火車還是誤點? 數字能說話,但資料那裡呢? 提供成大分析的資料為什麼不能一併開放呢?

開放資料是一種文化,台鐵情況讓我想到台電在去年轉變的案例,在核能與缺電的議題下,對於缺電的原因,大家總覺得台電說的不清不楚,因此引來「開放台電」行動,想要從資料中討論缺電的原因。無論這個行動的過程中所發生的爭議是如何,為台電帶來的最大獲益應該是面對資料開放的態度和如何利用資料解決問題,同樣的,台鐵是否也能從開放資料開始來解決問題呢? 火車誤點在台鐵是司空見慣之事,但背後所隱含的恐怕是一個國營事業單位的資訊化落後,而無法發現問題、解決問題的窠臼。

WordNet-Similarity Installation

This logs my installation of WordNet Similarity.

The current version of WordNet::Similarity is 2.0.7, released on October 4, 2015. The install file in source code explains the installation well, however, some little problems occur with new Mac OSX, e.g. Sierra.

The WordNet-Similarity 2.0.7 works with the other packages:

  • WordNet-3.0
  • WordNet-QueryData-1.49
  • Text-Similarity-0.13

WordNet-3.0 needs to be installed firstly, and then the other two packages. Although WordNet 3.1 can be installed via Brew, my case is not successful to make WordNet 3.1 working with WordNet-Similarity 2.0.7.

As the installation of WordNet, a issue was occurred from the step of ‘make’ in stubs.c. The following is the error message.

stubs.c:43:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result =
~~~~~~ ^
stubs.c:55:14: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = bitfieldstr;
~~~~~~ ^
stubs.c:72:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: bit bitnum”;
~~~~~~ ^
stubs.c:78:14: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = bitfieldstr;
~~~~~~ ^
stubs.c:92:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result =
~~~~~~ ^
stubs.c:105:14: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = resultbuf;
~~~~~~ ^
stubs.c:117:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: glosses [1 | 0]”;
~~~~~~ ^
stubs.c:132:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: fileinfo [1 | 0]”;
~~~~~~ ^
stubs.c:147:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: byteoffset [1 | 0]”;
~~~~~~ ^
stubs.c:162:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: senseflag [1 | 0]”;
~~~~~~ ^
stubs.c:178:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: contextualhelp partofspeechnum searchtypenum”;
~~~~~~ ^
stubs.c:183:14: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = helptext[pos][searchtype];
~~~~~~ ^
stubs.c:193:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: reopendb”;
~~~~~~ ^
stubs.c:207:17: error: no member named ‘result’ in ‘struct Tcl_Interp’
interp -> result = “usage: abortsearch”;
~~~~~~ ^

Google the issue. I found a solution from StackOverflow. One suggestion is modify the line using ‘interp->result’ to ‘Tcl_SetResult’, e.g.

from

interp->result = "usage: glosses [1 | 0]";

to

Tcl_SetResult(interp, "usage: glosses [1 | 0]", TCL_DYNAMIC);

After the modification, do configure and make again. WordNet 3.0 can be successfully installed. (You type wn in terminal for testing if the WordNet installation is successful).

With having WordNet 3.0, the WordNet-QueryData-1.49, Text-Similarity-0.13, and WordNet-Similarity 2.0.7 are installed well via following procedure:

  1. perl Makefile.PL
  2. make
  3. make test
  4. su
  5. make install
  6. exit

To test if WordNet-Similarity 2.0.7 is installed successful, you can go to the folder ‘samples’, and find sample.pl. Then, try ‘perl sample.pl cat#n#1 dog#n#1′. You will see the result like the following screenshot.

screenshot-2016-10-15-12-09-22

All functions of WordNet-Similarity 2.0.7 are in the folder ‘utils’. If you’d like to launch a web service of WordNet Similarity, you can use similarity_server.pl. Just execute it. Then, you can see as following screenshot.

screenshot-2016-10-15-12-21-40

2016年歐洲資料論壇(European Data Forum 2016)與會記行

1.歐洲資料論壇的背景

歐洲資料論壇(European Data Forum, EDF) 是每年一次的會議,聚焦在以資料為主的多個面向,如社會、經濟、研究、工程、和科學等,並著重於歐洲的資料趨動經濟之提昇,該會議自2012年起開始舉行,是由歐盟執委會(European Commission)中,連結的數位單一市場(Connected Digital Single Market)計畫下主導,但會議行政管理是由歐洲各國產官學相關人士組成指導委員會來執行,以確定每年會議主題與內容、目標、及預算支配,且評估歐洲各國提出舉辦會議的申請。

這二年的主題都以資料經濟(Data Economy)為會議主軸,來貫穿4個主題,

  • 巨量資料(Big Data),如何利用新的科學和工程方法,有意義的處理大量資料,
  • data_economy開放資料(Open Data),如何透過跨部門資料整併,以支援決策制定,提昇政府治理的透明度,
  • 鏈結資料(Linked Data),如何將鏈結資料技術與方法做為普遍的資料整合平台,
  • 由資料產生的價值(Data-driven value),由前三者去審視資料能產生的價值,並研析資料趨動經濟的方法和工具。

而基於數位經濟和數位化社會(Digital Economy and Society)的發展,會議本身也關注三個面向的發展,

  • 技術面,如何駕馭現今如此大量的、異質的、和動態的資料,面對這樣的資料世代,科技和基礎建設會是什麼樣貌?
  • 應用面,因為開放資料、鏈結資料、和巨量資料的快速發展,可能的新產品和服務會是什麼?
  • 社經面,在這個新的資料世代中,社會衝擊、法律問題、政府政策法規、商業模式、和創新方式的改變會是什麼?

歐洲資料論壇(EDF)是一個聚集歐洲各國的產官學人士,共同討論資料趨動創新的機會與挑戰的重要會議。所謂的資料趨動創新的機會與挑戰是著重在資料的基礎設施、工具、應用程式的發展潛力,及其所面臨之問題,因此資料趨動創新特別重視創新所可能帶來的社會和經濟面的影響。EDF這個會議所企圖吸引的參加者,是涉及資料價值鏈中的利益關係者(stakeholder),無論是從巨量資料技術方法之應用到創新想法的突破,或者是,各項進行中之政策的辯論到前瞻思維的演講中獲得啟發,在EDF中的意見與想法的交換,是會議的價值,這將為歐盟各國在未來資料經濟之研究課題的設計,和政策決定的方向上帶來影響,這即是推動資料趨動創新往前動力,強化歐洲資料經濟的力量,也是奠定歐洲資料經濟在全球地位的基礎,因此這屆的EDF將主軸定為 Scaling up the European Data Economy,換句話說,資料經濟的議題在歐盟並不是新的開始,而是進入到擴大並強化各個領域在資料經濟的應用規模。

By Rijksdienst voor het Cultureel Erfgoed, CC BY-SA 3.0 nl, https://commons.wikimedia.org/w/index.php?curid=37243214

本屆的歐洲資料論壇(EDF)是由荷蘭埃因荷芬科技大學(Eindhoven University of Technology )中資料科學中心(Data Science Center Eindhoven (DSC/e)) 肩負起主要籌辦的角色,因此會議舉辦城市即在荷蘭埃因荷芬,該城市即是一個工業城,是許多知名企業的根據地,如菲利浦、NXP、ASML…等,值得一提的是城市行銷是以Brainport為主題,有別於鹿特丹的海港和阿姆斯特丹的空港,所謂的Brainport即是集合整個區域的公司企業、大學、和研究中心,成為一個創新研發的城市,這樣的策略倒也很符合EDF主軸,是強調資料趨動的創新下的經濟動能。

而會議場館Evoluon則是一個很特殊外觀的建築物,這個飛碟造型的場館是原本是當地的科學館,在1966年就落成,已經有50年的歷史,後來成為菲利浦的會議中心。

2.會議內容

2.1.真槍實彈的鍵結資料應用

EDF2016會前有幾個工作坊和活動一同在Eindhoven舉行,巧好會議前一天(6/27)的早上看到有一個活動是荷蘭鏈結資料平台(Platform Linked Data Nederland)舉辦的荷蘭鏈結資料會議,在沒有事先報名的情況下就直接殺去會場,結果主辦單位很包容地讓我參加了會議,結果會議還沒開始就遇到老朋友,Simon Scheider,目前在烏特列支大學(Utrecht University)地理系任教,仔細一看,他上下午各有一個演講,一個是講的是地理資料在進行跨資料集連結時,如何除錯、確定地理實體的型別、正確的相互連結的工作流程,另一個是講鏈結資料和空間分析整合的潛力。更有趣的是,下午有一個講者居然是我的指導教授Rob Lemmens,他的演講是在介紹歐盟的一個計畫ENERGIC Project 中如何利用自願性地理資料進行Datathon,這真是太巧了!

其實會議中有一個案例很吸引我,講的是半導體企業NXP和Freescale合併時,產生資料整合的問題,雖然二個企業體都是做半導體,各自企業的資料架構是不同的,因此在企業整併的過程出現資訊系統整合的難題,為了解決這樣的困境,他們選擇使用鏈結資料的技術和方法來整併二家企業的資料,這個工作是由Semaku這家工公司承接,最後NXP和Semaku根據這樣的經驗建立了一個 NXP Enterprise Data Hub,這個鏈結資料的應用在去年接連拿到荷蘭鏈結資料應用的首獎和歐洲鏈結資料首獎

 2.2.企業善用資料,開創新商業模式

edf2016

由Keynotes的結構來看,這個會議確實是秉持產官學互動交流的原則,在8個Keynotes中有4個是來自於業界的分享,菲利浦總裁 Frans van Houten介紹自家許多家電產品已經收集消費者的使用行為資料,分析資料可以提供更好的服務,例如,電動牙刷利用藍芽和手機連結收集使用者的刷牙方式,若有使用者刷牙方式錯誤,手機應用程式可以自動提醒。西門子數位工廠部門工廠資料服務資深副總 Ralf Wanger則是介紹西門子賣出的機器中裝有感測器(sensor),可以消費者可以將機器連結上西門子的資料服務中心,系統可自動分析維修時間,並自動安排員工進行檢修。導航和地圖空間資料服務的知名公司TomTom之總裁Harold Goddijn 則是分享公司跨界轉型過程,單純買圖資或GPS導航的獲利已經不高,TomTom已將圖資應用在支援無人車研發。知名線上音樂公司Spotify,資料分析主任Andres Arpteg 以資料科學的角度來了解消費者使用行為,他們利用資料探礦的方法分析了解消費習慣以提昇音樂平台的服務。

第一天下午和第二天有三個時段各有三個平行的場次,主題分別是Automotive, Data-Driven Government, Agrifood, Urban Smart Living, Smart Industry,Novel Emerging Areas, Educations and Skills, Healthcare, 和 Media,這9個場次的講者來源,有政府官員、非營利組織、大學及科研中心,更有來自公司企業,不同領域在同一主題上所面臨的問題可能不一樣,但在同一個場所的討論則有助相互交流和經驗分享,與會者中有許多是來自於歐洲的中小型企業(SMEs),藉由研討的過程,他們有機會提供他們的技術與經驗和講者交流,也就創造他們參與大型計畫,以及和大型企業合作的機會。

2.3.政府部門主導資料經濟政策的制定img_0721

會議中有二個歐盟政府官員的Keynotes,都與EDF的組成有關,一個是來自歐盟執委會 在數位經濟和文化的專員,以錄影方式發表演說,另一個是Márta Nagy-Rothengass 歐盟網通科技總署 (DG Connect) 中資料價值鏈部門的主任,以「 Building a data-driven economy – The perspective of the European Commission」為題演說。

img_0722她的演講中清楚地勾勒出歐盟在資料政策上制定與推行,在多國組成的歐盟,不同制度文化下,資料的管理方式不同,造成資料整合應用上的障礙,一直是歐盟成立以來著重的問題,隨著開放資料、巨量資料和資料科學的風潮,歐盟也逐漸地在過去電子化政府運作中做出改變,開始著重於建立一個有效率的資料生態系統,朝向政府、科研、企業、公民等不同角色的公私部門夥伴(Public-Private Partnership)的合作架構,以促進資源與利益的共享、責任的共同承擔、並著重社會層面議題。

為了建立這樣的資料生態系統,開放資料的策略變得很重要,因為資料能開放地被近用,才有可能讓資料在不同的角色中相互流動,資料有流動就增加應用加值的可能性,在這樣的脈絡下,開放資料被視為資料經濟的一部份。因此歐盟不但極積的建立歐盟開放資料平台,2012年啟動,一開始只有歐盟本身的資料,去年(2015年)起開始要求各國開放資料匯入,另一方面也極積地調查歐盟資料市場的規模和潛力,透過歐盟經費補助,委由國際數據資訊(IDC)和Open Evidence 進行歐洲資料市場的調查,報告書在2015年發表,同時他們也建立了一個資料視覺化的工具,European Data Market Monitoring Tool,可瀏覽歐洲的資料市場情況。

2.3.學研機構提供資料治理的策略

img_0624

在Data-Driven Gvoernemnt場次中,JOHANN HÖCHTL 發表Performance-indicator based policy-making in Austria

會議中的展覽單位和參展海報中,不少是歐盟計畫的成果,如IQmulus,仔細調查可以發現,歐盟執委會在推動資料經濟,並不是單單只有制定政策,且提供許多經費給科研單位進行長期的研究,這些科研計畫是以解決問題為導向的研究,並重視跨國、跨領域間的協同合作,這些計畫過去也都參加過之前的EDF,在歐盟的網頁上可以看得到這些計畫

在Data-Driven Government場次中,有4個演講,除了論述政府如何應用資料治理的策略與方法,也包含了實務面的處理,荷蘭如何應用資料分析改善交通問題,奧地利如何運用開放資料制定指標以決定政策,法國如何透過培育計畫培殖更多資料科學人才。

fhg_193_ids_grafiken-eng-03Sören Auer是Fraunhofer IAIS 企業資訊部門主任,也是波昂大學企業資料系的教授,他在Smart Industry以Industrial data space digital sovereignty over data為題發表演說,提出 Industrial Data Space 是一個利用資訊標準和共同治理模式建構出一個虛擬的資料空間 ,這個構想之目的在於嘗試在商業環境中,讓資料的交換更安全且資料的連結更容易,這個構想想建立的系統也試圖提供一個基礎,以建立和使用智慧服務和創新商業流程,使得資料擁有者以確保他們的資料治理權 (digital sovereignty)。

透過使用情境,可以了解Industrial Data Space的架構和需求,這架構是在於創造資料價值鏈,以及調適以特定領域中鏈結資料的語彙以輕量化的語意表達,Industrial Data Space廣大地支援不同領域的情境,同時,也是下一代的工業生產 (工業4.0) 可以應用的範疇。此外,他也指出 Industrial Data Space 也是一個跨領域組織,包含商業、政府、和科研單位,於2014年底在德國成立,這個組織的目標清楚企圖建立一個歐盟、甚至是世界級的平台。

2.4.重視巨量資料科學研究、應用、與人才培育

EDF2016中二個Keynotes是來自於埃因荷芬(Eindhoven)附近的科研中心,分別是荷蘭提堡大學(Tilburg University)校長Emile Aarts和德國多特蒙德大學(TU Dortmund University)資料科學中心的主任Katharina Morik,他們各自介紹各自資料科學中心如何透過在企業合作以資料科學的方法解決問題,此外,也強調各自資料學中心的能力和潛力,以吸收更多人才的加入。加上埃因荷芬大學資料科學中心,似乎讓我有感覺有一個趨勢,就是這個過去以工業生產為主的區域,已經看清資料價值鏈中,傳統工業轉型後,所要扮演的角色,所以需要的人才,這些資料科學中心成為這個區域進入下一個工業世代的軍火庫,不但提供策略想法,也訓練人才。

3.會後心得

這次EDF的參與者有1070人,來自於48國家,參與人數最多的15國依次分別為,荷蘭、德國、比利時、英國、西班牙、希臘、奧地利、法國、義大利、愛爾蘭、匈牙利、挪威、盧森堡、芬蘭、萄葡牙等,有明顯的舉辦國優勢的傾向,以參與人員的行業類別而言,有40%是來自於工業界,32%是學術界、13%是公部門、和15%的其它,會議參與者多數是來自於業界,但科研單位的人也為數不少,這和我過去參與的學術會議巧好有點相反的情形,因此二天會議談論的事情,多是實務面的工作和面臨的問題,較少生硬的科學理論,相對而言,整體內容是比較能讓一般人進入的。

荷蘭North Brabant省的經濟經理Bert Puali,在會後的宣傳錄影中提到,「…在我們變得談論過多巨量資料的可能性之前,我們應該加入有執行力的那一方,藉由資料和資通訊相關的研究,以了解資料經濟的市場有多大…」,其實這就是EDF的主軸,整個會議雖然扣合歐盟「資料經濟」發展的政策,但不會讓人感到過多政策推動鑿痕,可以讓人感到的是,歐盟對於政策推動是根植於問題與挑戰的認知和了解,接著再提出解決問題的技術方法的一系列進程,反觀國內,通常把二件事情給壓縮了,常在政策推動的過程中,讓人看不清,解決問題的意識和方向是什麼? 而堆疊過多的技術名詞,沒有執行的實質內容,最後流於空洞。

在海報、展覽單位、以及與會會眾中,很多是資通訊產業的中小型企業(SMEs)的員工、甚至是老闆,試圖透過這個會議中尋找合作機會,這與歐盟資料經濟策略中重視中小型企業(SMEs)所扮演的角色有關,個人觀察,這就和公民科技在開放資料生態系中扮演重要角色是類似的,政府或大型企業在面對新問題和新挑戰時,由於組織體系的龐大,未必能及時適度確切的反應,而中小型企業較具有彈性,可以容易調整方向,調度人才,因此大型企業或政府單位和中小型企業合作,較能快速地解決問題,如之前提到NXP和Semaku的案例。

從許多EDF的演講中,可以發現有些研究是歐盟所補助的計畫,這些計畫無論是在智慧城市、物聯網或工業4.0上,都以資料為本,提出解決問題的架構、技術或方法,而這些計畫也不僅是單一科研單位所執行,而是跨國、跨領域協同合作,這種3-5年左右的研科計畫,也提供教育、研究資源,培養更多的人才,因此可以想像的,一個新興議題,如資料經濟,一開始大家都不熟悉,在這樣的情況下可以做出的策略自然保守且限縮的,而在補助科研單位的研究計畫中,利用博碩士生在深入研究推導,研究成果最終成為政府單位政策推動依據,這樣一個階段、一個階段的進行下,歐盟在開放資料、巨量資料、和鏈結資料逐漸形成策略,以面對不斷演變的挑戰,因此提出資料趨動經濟的論述,成為歐盟政策內容,形為今日如此的規模,這絕對不是把堆砌一堆技術名詞而缺乏解決問題方法的報告書重抄一遍,再重新包裝的政策內容。

看到歐盟對於資料相關的政策,反觀台灣,想問的是,面臨新的資料世代,台灣政府對應的政策是什麼?

地圖防盜

在紙圖盛行時代,為防止地圖被競爭對手盜用,因此會在地圖中夾雜一些不為人知的符號或註記來區辨出地圖是來自於自家之手,紐約州有一個虛構地名 Agloe,自1930年代就出現,其實就是製圖者所假造的一個地名,一個copyright trap。但有趣的是,USGS 還是收錄它於地名資料庫中,且Google Map也可以找得到 (Agloe General Store)!

Agloe Best

藏在公車站牌中的地方記憶

因應都市發展,有些地標搬遷或消失,例如阿波羅大廈、聯合報大樓,台北市政府在今年(2015年)3月中頒佈了新版的公車命名方式,即是朝向於街道系統以為主的公車站牌命名。這個方向有好有壞,好的地方是街道系統跟著公車站牌方便搭乘的人區分位置,但街道系統已經是充滿了中國地名[註一],公車站牌也是用一堆中國地名再堆砌一次,台北市就充滿了濃濃中國特色。而目前捷運站的命名也存在這樣的趨勢,公車站牌密度如此高,真的要以這種方式命名嗎?

公車站牌事實上隱藏著地方的記憶,這些記憶也有可能隨著公車站牌以街道系統的命名而消失,可以看看幾有趣的例子:

  1. 社子臨江園。根據維基百科,社子島在早期設有「蔬菜專業區」,在沒有大量化學肥料的年代,使用的是水肥,於是在今日的延平北路七段附近,水肥處第一隊設立分隊,利用淡水河運,收集來自於台北市區的水肥,以供應社子島的農業使用。根據王志文(1998)「滄海桑田話社子」一書中記載,後來公車由台北市區向社子島開通之時,要設立公車站牌,當地居民覺得「水肥隊」不好聽,所以取了一個優雅的名字,「臨江園」。本來以為這是一個餐廳之類的地方,居然隱藏一段故事。
  2. 北投八勝園。循著Google街景圖左看右看,就是找不到明顯的建物或地標,對映這個站牌。後來,再以Google查詢,結果發現八勝園是日治時代有名的溫泉旅館,但國民政府來台後被軍方徵收使用,多次整修外觀早已和以前不同,但當地居民仍然習慣使用這個名稱來當公車站牌。
  3. 三重中正堂。以前是活動中心,是當時年輕人聚會的場所,但後來改建為新北市立圖書館三重分館,而公車牌站也沒有換,所以利用Google查詢三重中山堂,會直接出現圖書館,和附近的美食,表示「中正堂」並沒有被後來的圖書館取代,成為當地人的新地標。

隨著都市化過程,公車站牌是有調整的必要,但可以考慮一個比較完整妥善的方式進行,對於有意義的站名不一定要完全抹滅吧!

[註一]根據龍應台的《大江大海 一九四九》一書記載,台北市的街道之所以會這麼中國,是由於上海建築師鄭定邦,沿用了上海市的街道命名方法(這個命名方式是為了擺平各國在上海租借地的命名爭論),而大量使用中國地名,把過去日治及日治之前所遺留下來的地名記憶抹滅。

[OSM活用術]如何安裝在開放街圖(OpenStreetMap)在Garmin的機台

在台灣買GPS機台,多數只會裝台灣的圖資,而出國時經常面臨有GPS機台沒有圖資使用的窘境; 相反地,在國外買的機台也只裝載當地圖資,往往回台灣後,也會面臨沒圖可用的狀況,就必須再額外購買圖資。其實,開放街圖(OpenStreetMap)提供了一個免費的圖資。

隨著OSM的圖資在世界各地愈來愈完成、豐富,提升OSM圖資實用性。Garmin 目前是GPS熱門廠牌之一,使用者多,在OSM社群中自然有人已經把OSM圖資轉為Garmin機台可讀的IMG檔。以目前還在更新維護的Garmin圖資載點,如圖1所示,是由荷蘭人Lambertus所維護,可以自由地選擇所需圖資之區域,下載該區域的IMG,再置入Garmin的機台,就可以使用。

http://garmin.openstreetmap.nl/

圖1: 可下載Garmin機台可讀的OSM圖資 (garmin.openstreetmal.nl)

步驟很簡單,在圖1中,可以選單方式選擇所需區域,或者勾選手動的方式,選定一個或多個區域,筆者只需要越南河內,因此只選擇河內單一區域,然後填上你的email,按下”Build your map”,如圖2所示,系統會自動產生你所需的IMG檔,並email給你。

Garmin OSM region selection

圖2: 選撢所需圖資之區域

隨著email所提供的連結,來到如圖3的網頁,其中”osm_generic_gmapsupp.zip “,就是可以載入Garmin機台的IMG檔,如果你的電腦上有裝Garmin出產的地圖瀏覽工具,也可以下載在這個頁面中所提供的其它檔案。

Screen Shot 2015-10-08 at 6.20.20 PM

圖3: 經由email提供的連結下載圖資

將IMG修改一下檔名,以免覆蓋掉原本圖資,放上Garmin 機台的資料夾。開機後,縮至使用的地圖區域,如這次範例是在河內,縮到河內,就可以看到OSM的地圖。如圖4。

OSM in Garmin Dakota 20

圖4: OSM圖資在Garmin Dakota 20

開放與機密!? 一個「鳥」看法

因為601旅所在的龍潭機場並非要塞堡壘地帶,15人的貴婦觀光團不被起訴,但同樣地,鈕承澤拍攝電影,因勘景需求,「申請」進入高雄軍港,而中國籍攝影師因未在名單之內,卻因鈕承澤為演藝知名人士,海軍接待人員不疑有他,讓中國籍攝影師混在這行勘查團中,進入高雄軍港,結果因違反「要塞堡壘地帶法」第10條第1項之非法出入罪,處有期徒刑5月,緩刑2年,並應向公庫支付新臺幣60萬元,加上60小時之義務勞務。這之間差別在於被造訪的地方是否被劃為要塞堡壘地帶,但有多少地方被劃為「要塞堡壘地帶」呢? 這個問題只能問國防部,根據蕃新聞中有一文章寫到

根據檢調掌握的資料,目前涉及「要塞堡壘地帶法」中範圍包括本島基隆、新北、新竹、花蓮、台東、高雄6處,其餘則為外島的金馬、澎湖等地。
由於「要塞堡壘地帶法」的認定範圍,不能全然由檢方認定,因此必須要函詢國防部等相關單位確認。

而吊詭的是,在阿帕契案爆發時,601旅所在的龍潭機場是否為要塞堡壘地帶法所認定之範圍,就有網友打臉國防部,在行政院公告「龍潭、新社、頭嵙山、歸仁及左營等5處軍用機場周圍禁止飼養飛鴿距離範圍」之中,即是依照要塞堡壘地帶法來禁止機場周遭的養鴿,但最後法院無法起訴這15人是因為國防部根本沒把龍潭機場劃定為要塞堡壘地帶,那之前的公告是怎麼回事?

國防部對於要塞堡壘地帶法所劃定的區域是否應該讓國人充份了解,以免沒事去釣魚也可能觸闖要塞堡壘地帶在民用機場拍照也可能被抓也不能隨便拍軍機 … ,軍方只要不讓你看、不讓你知道,就用一個過時的法令來恐嚇人民,遇到權貴之時,這些法令反而成為保護傘,不免讓人質疑,這塊國防布果然是遮腐蓋爛、而不防機密,國防部很鳥、塞堡壘地帶法也很鳥。

而真正「鳥」的觀點是,是從空中看來這些存放國軍精良武器的軍事基地,以當代民用衛星航空的科技,要把軍事基地看的一清二楚根本不是什麼難事,故意把地圖留白,就可以隱藏基地嗎? G社所提供的衛星影像中,龍潭基地清楚可見,但在農林航測所提供的航空相片圖,則是挖空了一塊,再來看看OSM和G社的在龍潭基地附近的地圖,G社地圖以前是台灣民間製圖商提供,對於軍事用地依照OSM把基地範圍、跑道、和建物都揭露了,在阿帕契案前,對於軍事設施的製圖,都盡量不主動提起,避免麻煩上身,但阿帕契都是農村設施了,有什麼好忌諱的,我們只是畫畫軍事基地的農村設施罷了!

再者,臺灣地區基本圖測製管理規則 在2003年就己經廢止,現行法令國防部是什麼法令限制軍事用地的繪製呢? 國家安全法? 國家機密保護法? 但貴婦組團就能進入了,還有機密可言? 國土安全也只不是FB照片讓人按讚的理由。

Screenshot 2015-08-23 11.08.17TG-96224060-4
Screenshot 2015-08-23 11.16.23

資料開放是不能涉及國防安全,這個道理誰都能懂,在談地理空間資料的開放時,往往遇到要問國防部,事情恐怕就是GG。但對於什麼是國防機密的認定,感謝貴婦團一行人突破重圍,讓我們了解,很多本來被認為有危及國家安全的規定,其實國防部並沒有這麼要求,但行政機關還在以舊有法令來威嚇人民!?

那什麼樣的地理空間資訊開放會危害國家安全? 什麼是資料是機密? 國防部有能力判斷嗎? 阿帕契儀表板未通電下,拍照po網是否構成洩密,國防部自已也不確定,還得老美說沒問題,才由法院判定不起訴。同樣的道理,以當代資訊科技發達,國防部是否能掌握新興科技的發展,而有防治策略呢? 話說,2公尺解析度的數值高程模型(DTM)是機密資料,而5公尺解析度的數值高程模型(DEM)則是一般公務機密,精細的地表高程資料,可以提供彈道計算,提高飛彈命中目標機率,然而這個理由成立嗎? 花點錢,在日本或國外的一些公司行號,就可以買到5公尺等級的數值高程模型(DTM),再者,對岸的中共,衛星技術並不差,這些資料共軍無法自己生產嗎? 那國防部管制的理由是什麼呢?  還是一切以跳針式的回應,「不可以!、不可以!、不可以!」,問為什麼不可以,回答依然是「就是不可以!」 ,這種愚民式策略,在當代開放政府的風潮下,這種處理方式,只會突顯自身能力的崩壞。鳥!